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Abstract 

Comprehensive analysis of omics data, such as genome, transcriptome, proteome, metabolome, and interactome, 
is a crucial technique for elucidating the complex mechanism of cancer onset and progression. Recently, a variety 
of new findings have been reported based on multi-omics analysis in combination with various clinical informa-
tion. However, integrated analysis of multi-omics data is extremely labor intensive, making the development of new 
analysis technology indispensable. Artificial intelligence (AI), which has been under development in recent years, is 
quickly becoming an effective approach to reduce the labor involved in analyzing large amounts of complex data 
and to obtain valuable information that is often overlooked in manual analysis and experiments. The use of AI, such 
as machine learning approaches and deep learning systems, allows for the efficient analysis of massive omics data 
combined with accurate clinical information and can lead to comprehensive predictive models that will be desirable 
for further developing individual treatment strategies of immunotherapy and molecular target therapy. Here, we aim 
to review the potential of AI in the integrated analysis of omics data and clinical information with a special focus on 
recent advances in the discovery of new biomarkers and the future direction of personalized medicine in non-small 
lung cancer.
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Introduction
To improve prognosis of cancer patients, there is a grow-
ing trend to analyze numerous types of omics data, such 
as DNA, RNA, microRNA, protein, and metabolites [1, 
2]. Many researchers have been aiming to develop identi-
fied markers for clinical application of early cancer detec-
tion, prognosis prediction, and evaluation of treatment 

efficacy. The recent advent of next generation sequencing 
(NGS) has permitted the generation of comprehensive 
profiles of somatic mutations in various cancer types and 
has contributed to the rapid advancements made in the 
field of cancer research. Genome sequence-based stud-
ies of large numbers of clinical samples, such as those 
available through The Cancer Genome Atlas (TCGA) 
and International Cancer Genome Consortium (ICGA), 
have led to the identification of a variety of driver gene 
mutations and oncogenic signaling pathways that give 
cancer cells a fundamental growth advantage during 
their neoplastic transformation [3–7]. These studies have 
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revealed significant genomic heterogeneity, not only in 
different regions of the same patient, but also within a 
single tumor, and are contributing to the elucidation of 
the essential qualities of cancer development and pro-
gression [8]. Furthermore, numerous biological networks 
of genetic mutations affecting DNA copy number, meth-
ylation, the proteome, and the transcriptome have been 
dramatically demonstrated in cancer systems [9–12]. In 
addition, the recent advanced omics-technologies allow 
us to conduct single cell multi-omics sequencing, which 
can characterize the unique genotype and phenotype 
of each individual cell. This approach can provide new 
insights into tumor heterogeneity and deep characteriza-
tion of the tumor microenvironment at a single-cell reso-
lution [13]. Therefore, integration of these diverse omics 
data with highly accurate clinical information should lead 
to new clinical developments regarding the prevention 
of cancer onset and new treatment strategies based on 
intratumoral heterogeneity.

In parallel with the development of omics data analy-
sis, recent exploitation of artificial intelligence (AI)-
based technology has progressed rapidly. The theory of 
AI itself has existed since around the time of World War 
II, but several endeavors at developing AI failed due to 
problems associated with the lack of computing power. 
However, the application of AI in molecular biology has 
become more common with the advancements in com-
puter technology. In accordance with the development 
of AI technology, trained deep learning has gradually 
evolved and currently plays an important role in clini-
cal applications, especially in analyzing radiographs 
[14–16] and pathological images [17–19]. Meanwhile, the 
machine learning approach remains to be used mainly for 
omics data analysis due to the features of small sample 
sizes and large dimension data [20]. Multiple omics data-
bases, such as TCGA and ICGA, have been dramatically 
expanded. Additionally, recent new multilayer omics 
analyses, such as single-cell sequencing, have been gener-
ating an extremely huge amount of data, resulting in the 
rapid evaluation of these massive amounts of data being 
beyond the capabilities of manual analysis. To reduce 
the level of labor involved in analyzing huge amounts of 
complex omics data, successful collaborations between 
biologists and computer scientists are required. Ulti-
mately, machine learning approaches will play a central 
role in the creation of efficient strategies for promoting 
positive cancer research outcomes.

Among the numerous types of cancer, lung cancer 
can be a pervasive disease that is commonly diagnosed 
at advanced stages, with non-small-cell lung cancer 
(NSCLC) being the most prevalent form of lung cancer 
[21]. In recent decades, two innovative treatment strate-
gies have been established to achieve long-term survival 

of patients with advanced NSCLC. The first one was 
based on the discovery of druggable oncogenic driver 
mutations or fusions. The second was the development 
of immune oncology, which is especially represented by 
immune checkpoint inhibitors (ICIs). Pivotal clinical tri-
als have led to the establishment of a variety of first-line 
therapies as standard treatment strategies for subgroups 
of patients with NSCLC based on oncogenic driver muta-
tion status and programmed death-ligand 1 (PD-L1) 
tumor proportion scores [22–25]. Furthermore, various 
clinical trials investigating new compounds or combina-
tion therapies with existing antineoplastic agents have 
been performed or are ongoing for each subgroup of 
NSCLC. Unfortunately, primary and acquired resistance 
against new strategies are a relevant issue and a primary 
concern as resistance complicates the decision of choos-
ing the best therapeutic strategy among the numerous 
treatment options available. Therefore, establishment 
of AI-based comprehensive predictive models for effi-
cacy and toxicity of each treatment is particularly desir-
able in terms of further developing individual treatment 
strategies. In this review, we summarize recent medical 
applications of AI for the analysis of omics data in combi-
nation with clinical information for NSCLC and discuss 
future application of this magnificent and powerful tech-
nology to clinical fields.

AI in medicine—concepts and utilization
Classification of AI
According to the algorithm used, AI is categorized as 
“rule-based,” which is called AI in a broad sense, and 
“non-rule-based,” which is referred to as machine learn-
ing. For rule-based algorithms, a person provides condi-
tional branches and rules to solve for an optimal answer. 
For example, if a person defines the AI algorithm with 
the condition that "when study number of two databases 
are the same, they are regarded as duplicates and should 
be integrated," the algorithm will be fully faithful to the 
command and integrate the numbers. A rule-based algo-
rithm is effective in limited situations in which there are 
limited choices. However, it is difficult to create a rule-
based algorithm under complicated situations.

In contrast, machine learning automatically generates 
rules from known training data and applies them to the 
machine-learning algorithm using statistical analysis. 
Therefore, machine learning is focused on reading pat-
terns from a large amount of data in a short amount of 
time and can semi-automatically obtain more accurate 
results than that of manual human evaluations. Machine 
learning is classified into three types, supervised learn-
ing, unsupervised learning, and reinforcement learn-
ing [26, 27]. Supervised learning is a technique in which 
the learner parameter is updated in order to get closer 
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to the correct output. In other words, training data are 
provided to the algorithm, the correct answer label is 
learned, and a learning algorithm is generated in which 
the output is the correct answer label. Next, it is verified 
whether a value close to the "correct label" is obtained 
when unknown data is applied to the generated model. 
This type of machine learning is usually used for classi-
fication tasks or regression tasks in image recognition. 
For example, when a whole slide image of lung cancer is 
provided as an input and the output is labeled as “normal 
lung”, the learner will be updated by the teacher that the 
correct answer is “lung cancer” [28]. Supervised learning 
requires an extensive amount of training data and the fol-
lowing labeled data, which are often difficult to obtain in 
medical and biological fields. Meanwhile, unsupervised 
learning is another machine learning technique in which 
the learner is updated using only inputs without “correct 
answer” data. Reinforcement learning is the final machine 
learning technique, and updates the learner through trial 
and error in order to determine the best course of action 
to suit the current situation.

Deep learning is a machine-learning technique inspired 
by the human brain that uses large mathematical func-
tions with millions of parameters based on a neural 
network structure that combines multiple layers of arti-
ficial nerve cells [16]. Using a deep-learning system, 
great power can be exerted for the recognition and clas-
sification of various medical images and is applicable to 
pathological diagnosis and cancer detection using com-
puted tomography (CT) images [15, 29–31]. While most 
of deep-learning algorithms to date have been applied 
using supervised-learning methods to learn a specialist’s 
thought or technique, some deep-learning algorithms 
have been recently created using unsupervised-learn-
ing methods. For instance, Yamamoto et  al. developed 
a deep-learning algorithm that enables an automated 
acquisition of explainable features from diagnostic anno-
tation-free histopathology images of prostate cancer and 
identified a new feature that improves the accuracy of 
diagnosis of prostate cancer recurrence [32]. Essentially, 
they created a deep-learning algorithm that uses histo-
pathological images of prostate cancer as inputs, which 
then automatically outputs feature maps of the histo-
pathological images.

Application of AI for analysis of omics data and clinical 
information
The application of AI in medicine is currently of great 
interest, especially in the diagnostic and predictive 
assessment of medical images [33]. Among AI algo-
rithms, machine learning is able to learn health trajectory 
patterns from vast numbers of patients (Fig. 1). This can 
help physicians anticipate future events at an expert level 

and draw curves from extensive amounts of clinical infor-
mation, providing insight well beyond the experience 
from an individual physician’s practice. Development of 
an algorithm for medical diagnosis or prediction typically 
requires a huge dataset, often referred to as “big data,” 
especially an algorithm in which supervised learning 
of deep neural networks are used. Accurate algorithms 
require high quality datasets; however, these big data-
sets need to be collected in various ways from multiple 
heterogeneous sources [34]. When the algorithm diag-
nosis outputs in the training phase differ from the actual 
diagnosis, the calculated parameter weights are updated 
in order for the output to approach the correct disease 
label. This process is then repeated many times. During 
the updating process, deep learning generally requires an 
extremely large number of samples to approach the cor-
rect answer as the algorithm parameter may exceed one 
hundred million.

Although the samples available for omics data analy-
sis have been usually limited, deep-structured learning 
usually requires an extremely large number of samples. 
Therefore, machine-learning models have been com-
monly utilized to create quicker and more accurate algo-
rithms under current situations for the analysis of omics 
data (Fig. 1). Because the inclusion of too much features 
may lead to overfitting and increases calculation costs, 
each analysis initially starts with biomarker selection and 
knowledge of omics data, as well as selection of statistical 
methods that increase the stability of the feature selec-
tion process. In biomedical analysis, the term “features” 
indicates measured characteristics used as learning input, 
such as age, gender, or X genes.

After feature selection, machine learning can be used 
to achieve various ends, such as disease type or sever-
ity classification or mortality prediction. To analyze 
omics data using machine learning, feature selection 
is one of the most important procedures because of its 
large dimension. Interestingly, machine-learning tech-
niques have sometimes been used in the feature selec-
tion procedure itself [35]. Best et  al. selected specific 
spliced-RNA biomarker panels using likelihood ratio 
analysis of variance (ANOVA) statistics and then com-
paring healthy individuals to patients with cancer based 
on analysis of differential expression of spliced junctions 
[36]. Logistic regression analysis, ANOVA statistics, and 
an ensemble approach with random sub-sampling have 
been widely used to select important features [37–39]. 
Another way to reduce the dimension of potential fea-
tures is using unsupervised-machine learning, such as 
least absolute shrinkage and selection operator (LASSO) 
regression or principal component analysis (PCA) [40]. 
LASSO regression, one approach of regression analysis, 
has the feature of part of the coefficient being set to zero, 
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reducing that dimension of the feature. Lu et al. obtained 
2139 genetic mutations for consideration in their initial 
model to predict long-term clinical benefit, which was 
then reduced using the LASSO model to 161 genetic 

mutations without a reduction in the clinical prediction 
accuracy [31]. Meanwhile, PCA weighs and integrates 
many features to create a relatively small number of new 
features that represent the overall variability. Guan et al. 
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performed PCA to distinguish patients with inflamma-
tory bowel disease (IBD) from control subjects using 
55 lipid species [40]. They defined two new features of 
principal component 1(PC1) and principal component 
2 (PC2), which were able to distinguish between patients 
with IBD and the control subjects. These filtering steps 
improve data normalization, which is a critical step in 
biological data analysis.

Generally, supervised and/or unsupervised learn-
ing models, including LASSO, support vector machine 
(SVM), random forest, and gradient boosting, have been 
used after feature selection to perform the classifica-
tion task, such as identifying patients with significantly 
worse mortality rates. SVM is an algorithm that mini-
mizes the distance of prediction error and is one of the 
most frequently used systems of supervised machine 
learning in omics data analysis. The advantage of SVM 
compared to that of other algorithms is its good accu-
racy and use of fewer parameters to be optimized, even 
if the data dimension is large. However, the disadvantages 
of the SVM algorithm are the large calculation costs as 
the amount of training data increases; therefore, feature 
standardization will be needed.

Identification of early detection biomarkers 
in NSCLC using omics data and AI
The application of AI in imaging diagnostics for NSCLC 
screening
Most patients with NSCLC have advanced stage dis-
ease with distant metastasis at the initial diagnosis. The 
five-year survival rate of patients diagnosed at stage IV 
NSCLC is only 6.0% for patients that receive historic 
cytotoxic chemotherapy regimens, while the five-year 
survival rate dramatically rise to around 70–90% for 
patients diagnosed with stage I NSCLC [41]. There-
fore, early detection of NSCLC is extremely effective 
toward improving the survival rate of patients. In 2011, 
the National Lung Screening Trial (NLST) showed that 
low-dose CT (LD-CT) screening for lung cancer reduced 
the relative mortality by 20% [42]. The all-cause mortal-
ity rate was 6.7% lower in the LD-CT group compared to 
that in the X-ray group. The US Preventive Services Task 
Force recommends an annual LD-CT screening test for 
high-risk populations, which comprises patients with a 
smoking history of at least 30 pack-years and an age of 
55 to 80 years. However, the inclusion criteria excluded 
young subjects and never-smoker or light-smoker popu-
lations. Furthermore, LD-CT screening is costly with 
high false positive rates because of the detection of 
benign pulmonary nodules [43].

To detect ever-smaller lung tumors and to improve 
the accuracy of CT screening, the development of AI-
based screening methods for all populations is rapidly 

progressing. Currently, complex algorithms and various 
types of software devices have been utilized to develop 
AI-based screening methods, and these are mainly cat-
egorized into two systems, namely, computer-aided 
detection (CADe) system and computer-aided diagnosis 
(CADx) system [44]. The CADe system, which highlights 
the detection of small nodules, has been engineered to 
improve radiologist sensitivity in identifying nodules. 
The CADx platforms can support diagnosis of pre-iden-
tified lesions when clinicians evaluate malignancy risk or 
conduct clinical decision-making. The development of 
both the systems is indeed important for improving diag-
nosis correctness, early diagnosis, and reducing diagnos-
tic variation owing to clinician’s subjectivity. However, 
most of the recent studies involve small sample sizes or 
no validated models, and therefore, AI-based screening 
methods are not enough for clinical application at this 
point of time.

To surmount the current difficulties, several frame-
works of academia–industry collaboration have been 
gradually established worldwide. Optellum Ltd., a com-
pany that specializes in image analysis of lung cancer 
diagnosis, developed a machine leaning algorithm called 
the lung cancer prediction convolutional neural net-
work (LCP-CNN), which was initially trained using the 
NLST data under guidance from experienced thoracic 
radiologists at Oxford University Hospitals [27, 45]. Sub-
sequently, to compare the performance of LCP-CNN 
with that of the Brock University model, recommended 
by United Kingdom (UK) guidelines, Baldwin et al. con-
ducted a validation study by retrospectively collecting 
data from 5–15  mm lung nodules, which consisted of 
1187 patients with 1397 nodules from three hospitals 
in the UK [45]. In this study, the area under the curve 
(AUC) for LCP-CNN was 89.6% compared with 86.8% 
for the Brock model (p ≤ 0.005), resulting in a better dis-
crimination ability of LCP-CNN with over 99.5% sensi-
tivity compared with that of the Brock model. As another 
model of academia–industry collaboration, Ardila et  al. 
used the TensorFlow platform of Google Inc., to develop 
a deep-learning model trained using 42,290 CT scan 
images from 14,851 patients, which is able to deter-
mine the malignancy of lung nodules without the need 
for human intervention [46]. The AI-equipped system 
detected minute malignant lung nodules in 6716 test 
cases with an accuracy of 94%. The model performed bet-
ter than six radiologists who made the diagnosis in the 
absence of previous CT images [46]. The approach was 
undertaken in a collaboration between Google, North-
western University, and other institutions, and is one of 
the systems moving toward clinical adoption. Both these 
studies showed successful academia–industry collabo-
ration on radiomics and AI-based screening, which can 
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make the detection of early lung cancer more precise and 
accessible for all the population.

The application of omics data and AI for identification 
of early detection biomarkers
For the purpose of supplementing the false positivity 
of LD-CT screening or earlier detection of lung cancer 
than that achieved using CT, a variety of new technolo-
gies have been investigated over the past decade for the 
discovery of biomarkers from various biomolecules. For 
example, because of dramatic advances in the accuracy of 
mass determination and characterization of target pro-
teins, mass spectrometry (MS) has been developed to 
analyze a diverse range of proteins, lipids, and metabo-
lites. Currently, it is possible to detect extremely small 
amounts of protein from tiny cancers using the advanced 
MS technology. In addition, Taguchi et  al. performed 
proteomics analysis using blood samples obtained from 
various cancer mouse models and found levels of the 
N-terminal pro-peptide of surfactant protein B (pro-
SFTPB) are characteristically increased in the blood 
of mice with lung cancer [47]. Diagnostic blood tests, 
including for pro-SFTPB, may be able to identify people 
with lung cancer up to 2  years earlier with about twice 
the sensitivity of the current LD-CT criteria [48–50]. 
This indicates the combination of LD-CT screening and 
detection of protein-based biomarkers will be truly effec-
tive for the accurate and early detection of lung cancer.

The use of machine-learning approaches and the 
accumulation of omics data in recent years have led to 
more sensitive and accurate detection of biomarkers. 
For instance, Noreldeen et  al. described a non-targeted 
lipidomic approach based on ultra-high-performance 
liquid chromatography coupled with quadrupole time-
of-flight MS in combination with two machine learning 
approaches (genetic algorithm and binary logistic regres-
sion) to screen candidate discriminating lipids and to 
define a combinational lipid biomarker in serum sam-
ples for distinguishing female patients with NSCLC [51]. 
They showed that fatty acid (FA) (20:4), FA (22:0), and 
lysophosphatidylethanolamine (20:4) can serve as a com-
binational biomarker for distinguishing female patients 
with early-stage NSCLC from healthy controls with good 
sensitivity and specificity and the AUC reaching 0.99. 
In a study using machine learning to parse omics data 
other than protein-based data, Best et al. analyzed RNA 
biomarker panels from platelet-derived RNA-sequenc-
ing libraries using particle-swarm optimization (PSO)-
enhanced algorithms [52]. Their results showed accurate 
tumor-educated blood platelets (TEP)-based detection 
of early-stage NSCLC (AUC, 0.89). Because the charac-
teristics AI are from a completely different perspectives 
than that of earlier reports, the AI studies may lead to 

the elucidation of molecular biological mechanisms of 
lung cancer progression, as well as the identification of 
biomarkers for its early detection. It is expected that AI 
in the future will be able to integrate diagnostic imaging 
with new biomarkers using the comprehensive analysis of 
omics data.

Development of immune checkpoint inhibitors 
(ICIs) treatment of NSCLC based on AI analysis 
of OMICS data
Current issues in the standard treatment strategy of NSCLC 
and further development of immune therapy
Pivotal phase III clinical trials have led to the worldwide 
approval of ICIs, such as programmed cell death 1 (PD-
1)/programmed death-ligand 1 (PD-L1) inhibitors and 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 
inhibitors, especially for non-squamous NSCLC without 
sensitizing Epidermal Growth Factor Receptor (EGFR) 
mutation or anaplastic lymphoma kinase (ALK) fusion, 
and squamous cell lung carcinoma [53–58]. Multiple 
treatment regimens, including PD-1/PD-L1 inhibitors 
with CTLA-4 inhibitors and PD-1/PD-L1 inhibitors with 
or without CTLA-4 plus platinum-based chemotherapy, 
are currently standard treatment options (Fig.  2). How-
ever, the optimal regimen for individual patients remains 
unclear as these new treatment regimens were compared 
to traditional platinum-based chemotherapy as the con-
trol-arm in all the phase III studies. Furthermore, com-
parative clinical trials of these new regimens have not 
been conducted and “round robin” clinical trials compar-
ing these regimens may be unrealistic. However, novel 
immune therapeutic agents other than PD-1/PD-L1 
inhibitors and CTLA-4 inhibitors are currently being 
investigated in several clinical trial settings [59], sug-
gesting multiple combination therapies of immune tar-
geting drugs may be approved before long as additional 
standard treatment options. Accordingly, the develop-
ment of patient selection strategies for individualized 
immunotherapy is an important issue. In recent decades, 
comprehensive analyses of tumor specimens combined 
with detailed clinical information have been performed 
in various clinical trials [60]. Although these large pro-
filing datasets have the potential to benefit the discov-
ery of novel prediction methods of immune therapeutic 
activity for individual patients, translational and reverse 
translational research has not been adequately con-
ducted. Under these circumstances, machine-learning 
approaches are some of the most promising technologies 
for identifying new biomarkers from various omics data 
that can be used to drive individualized immunotherapy.

The evaluation of PD-L1 expression and tumor muta-
tion burden (TMB) using immunohistochemistry have 
been widely adopted as markers for ICI treatment [61, 
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62]. However, the predictive ability is insufficient to 
adequately stratify patients for proper treatments com-
pared to that of targeted oncogenic driver aberrations. 
These limitations are associated with immune responses 
being affected by tumor-cell specific features of NSCLC, 
immune-cell specific features, and the tumor microen-
vironment [63]. Using AI to establish a comprehensive 
prediction model for immunoblockade strategies will 
result in relevant advantages compared to that of tradi-
tional biomarker analysis. Once AI technology is able to 
identify populations with innate resistance to specific 
standard ICI regimens based on large clinical datasets 
of comprehensive tumor samples from clinical trials or 
real-world data (RWD), such populations will be a good 
target for further clinical trials of new ICI combination 
therapy aimed at overcoming innate resistance to ICI 
regimens. In addition to selecting suitable target popula-
tions for clinical trial settings, standard machine-learning 
approaches are expected to identify relevant biomarkers 
and clinical factors as each variable is interpretable using 
machine-learning methods. Furthermore, it will be possi-
ble to conduct subsequent reverse-translational research 

based on AI-driven interpretable biomarker profiling to 
determine the biological mechanism of primary resist-
ance to specific standard ICI regimens. The harmoniza-
tion between biological approaches and AI technology, 
supported by basic biological rationale, should foster the 
next generation of clinical trials with improved probabil-
ity of positive clinical trial results.

Prognostic biomarker of ICI treatments using omics and AI
Much of the accumulated evidence regarding the rela-
tionship between specific driver gene mutations and 
the immune microenvironment is based on recent NGS 
analyses. Two tumor suppressor genes in NSCLC, serine/
threonine kinase 11 (STK11) and Kelch-like ECH-asso-
ciated protein 1 (KEAP1), are widely known as repre-
sentative inactivated mutations with immunosuppressed 
phenotypes, regardless of PD-L1 expression and TMB 
[64–66].

Liver kinase B1 (LKB1), which is encoded by STK11, 
regulates cell polarity and functions as a tumor suppres-
sor with germline mutations in this gene being related 
to the autosomal dominant disorder Peutz–Jeghers 
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syndrome [67]. LKB1 inactivation is detected in approxi-
mately 20% of lung adenocarcinomas, effects tumor 
initiation, and uniquely confers invasive and meta-
static properties through the reprograming of energy 
metabolism, such as glucose/FA uptake and pyrimidine/
purine balance [68–71]. In the NSCLC tumor microen-
vironment, LKB1 inactivation is shown to downregu-
late PD-L1 expression and promote proinflammatory 
cytokine production to suppress T-cell infiltration [72].

Meanwhile, KEAP1 is an adaptor for a cullin-3 (CUL3)-
based ubiquitin ligase and is involved in the control of 
oxidative stress to facilitate ubiquitination and the sub-
sequent proteolysis of nuclear factor erythroid 2-related 
factor 2 (NRF2), which is a master regulator of the 
antioxidant response. Loss of KEAP1 or CUL3 func-
tion results in constant NRF2 activation and the tumors 
exhibit resistance to radiotherapy and cytotoxic chemo-
therapy [73–75]. NSCLC with LKB1 inactivation and/
or disruption of the NRF2-KEAP1-CUL3 complex 
are widely known to demonstrate an aggressive clini-
cal course, shorter survival rates, and resistance to ICIs 
treatments. Furthermore, recent multi-omics analysis 
has determined that activating mutations in receptor 
tyrosine kinases genes, such as EGFR mutations, human 
epidermal growth factor receptor 2 (HER2) point muta-
tions and amplifications, MET Proto-Oncogene, Receptor 
Tyrosine Kinase (MET) amplification, fibroblast growth 
factor receptor 1 (FGFR1) amplification, and insulin like 
growth factor 1 receptor (IGF1R) amplification, are linked 
to primary resistance to ICIs, independent of PD-L1 
expression and TMB [76]. Among these, EGFR activa-
tion shows various immunosuppressive mechanisms to 
suppress tumor-infiltrating lymphocytes, including the 
expression of CD73 and secretion of T-cell inhibitory 
molecules [77–80]. Conversely, several driver gene muta-
tions, including AT-rich interactive domain-containing 
protein 1A (ARID1A), Janus kinase 1 (JAK1), and Janus 
kinase 2 (JAK2) mutations and co-occurring KRAS muta-
tions and TP53 inactivation, are associated with T-cell 
infiltration and reflect favorable responses to ICIs thera-
pies with high expression of tumor antigens [66, 76, 81, 
82]. Therefore, the widespread utilization of NGS-based 
testing, which is currently tending to decline in cost, will 
help guide the selection of good responders to ICIs.

Other monolayer omics analyses have also led to the 
elucidation of the immune-microenvironment of indi-
vidual tumors and to the establishment of predictors 
for ICIs therapeutic efficacy. For instance, examination 
of whole-exome signatures of mutagenic biological pro-
cesses within tumor specimens has found an enrichment 
of the C > A transversion-rich molecular tobacco-smok-
ing signature in patients with durable benefits by ICIs 
treatment [83]. When a tobacco-smoking signature is 

detected, the total number of single-base substitutions is 
shown to associate with TMB and more accurately pre-
dicts ICIs response than TMB [76]. Tumor-specific neo-
peptides linked to T-cell infiltrates in tumors and the 
clinical efficacy of ICIs have also been well investigated in 
various cancer types [84, 85]. For effective tumor killing, 
CD8+ T cells must recognize the neo-peptides presented 
by human leukocyte antigen class I (HLA-I) molecules. 
Deficiency of antigen presentation is associated with 
immune escape through both HLA class I germline 
homozygosity and the loss of heterozygosity, which then 
influences the response of cancer to ICIs [86, 87]. How-
ever, these monolayer omics analyses may be less effec-
tive in accurately predicting the outcome of treatment 
with ICIs and multimodal approaches might be needed 
[76].

In an effort to accurately classify patients with ICI 
response, Lu et al. attempted to establish a proper model 
using machine learning and whole-exome sequenc-
ing data [37]. They used metastatic melanoma as train-
ing data and validation was conducted using a NSCLC 
dataset. From the initial model, which considered 2139 
mutations, their machine learning technique selected 161 
mutations (11%). In the NSCLC cohort, the high-weight-
TMB group was found to be associated with better sur-
vival and better 6-month clinical benefit was predicted 
(AUC = 0.83). Interestingly, among the 161 mutations, 
only nine genes (< 6%) had negative coefficients and the 
weighted gene mutation selected by their machine-learn-
ing technique was consistent with previous mutation 
load markers based on molecular omics analysis.

Meanwhile, Wiesweg et  al. conducted machine learn-
ing approaches on RNA expression of a 770-gene 
panel covering immune-related genes in patients with 
advanced NSCLC, in combination with PD-L1 immuno-
histochemistry [39]. The model prediction plus PD-L1 
positivity identified NSCLC patients with highly favora-
ble outcomes.

In addition to NGS analysis, integrated analysis based 
on multi-omics data including tumor-adjacent tissue, 
should allow for construction of new models for the 
accurate prediction of therapeutic efficacy. In addition 
to the application of machine learning for omics data 
analysis, several studies have developed deep learning 
to predict ICIs efficacies using pathological images and 
clinical information. For instance, Khalid et al. conducted 
integrative analysis of spatial histological images by train-
ing deep-learning algorithms in addition to analysis of 
multi-region exome and RNA-sequencing data in 100 
patients with NSCLC [88]. The study demonstrated that 
lung adenocarcinomas with more than one immune-cold 
region were at significantly higher risk of cancer relapse, 
regardless of the number of total regions sampled and the 
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immune phenotypes of the other regions. In this way, AI-
based analysis using omics data and clinical information 
can provide a completely new perspective on predicting 
therapeutic effects. As the next research strategy, inte-
gration of multilayer omics data with machine-learning 
analysis in combination with analysis of clinical infor-
mation, such as CT and/or histopathological images, by 
training deep-learning will provide currently insensible 
prediction models.

Future direction and challenges of using AI 
in NSCLC with druggable mutations
Current issues of molecular targeted drug discovery 
and clinical trials in NSCLC with oncogenic driver 
aberrations
Several oncogenic driver mutations and oncogenic 
fusions have been established as therapeutic targets 
for NSCLC. In such oncogenic driver aberrations of 
NSCLC, EGFR, ALK, MET, and B-Raf proto-oncogene 
serine/threonine kinase (BRAF) mutations, and ALK, 
ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), ret 
proto-oncogene (RET), and neurotrophic receptor tyros-
ine kinase (NTRK) fusions have been identified and the 
clinical benefit of several tyrosine kinase inhibitors (TKI) 
targeting these oncogenic driver mutations and fusions 
have been proven by well-designed clinical trials (Fig. 2) 
[41]. Targeted therapy of oncogenic driver mutations and 
oncogenic fusions in NSCLC achieve higher response 
rates with longer duration of progression free survival 
(PFS) compared to conventional cytotoxic agents. How-
ever, several issues remain in the further development of 
individualized treatment strategies for oncogenic driver 
mutations and fusions. For instance, the clinical benefit 
for each oncogenic driver aberrations depends on both 
the inhibitory ability of a specific targeted oncogenic 
driver aberration and tolerability. Thus, the discovery of 
new compounds that exhibit highly selective inhibitory 
effect for targeted oncogenic driver aberrations is one of 
the most crucial steps in the development of new stand-
ard treatments.

As an example, we review the history of developing an 
ALK-fusion targeted therapy. The discovery of ALK dates 
back to 1994 when a chromosomal rearrangement, t(2;5), 
resulting in a nucleophosmin (NPM1)–ALK fusion was 
described in anaplastic large-cell lymphoma [89]. More 
than a decade later, subsequent work identified the ALK 
fusion proteins as oncogenic driver alterations in a vari-
ety of cancer types. Among them, the echinoderm micro-
tubule-associated protein-like 4 (EML4)–ALK fusion was 
recognized in 2007 as a representative oncogenic driver 
fusion in approximately 3–7% of NSCLC [90]. Several 
years later, the first approved agent for ALK fusion, cri-
zotinib, was shown to exhibit superiority over cytotoxic 

chemotherapy [91, 92]. However, because of its inhibi-
tory activity on several tyrosine kinases in addition to 
ALK, such as ROS1 and MET among others, crizotinib 
frequently causes various adverse events (AEs), including 
nausea, bradycardia and transient visual disorders [93]. 
The severe AEs sometimes lead to the targeted therapy 
being discontinued. Therefore, the development of a new 
agent with high selectivity for oncogenic ALK-fusion 
signaling was necessary as a next step to achieve further 
long-term tumor control with less toxicity. The second 
generation ALK-TKI alectinib was designed to inhibit 
the ALK tyrosine kinase with high selectivity [94]. Based 
on the results of three phase III clinical trials that proved 
the superiority of alectinib with PFS as the primary end-
point over that of crizotinib with less toxicity, alectinib 
was approved in 2017 as a first-line standard agent [95–
97]. This developmental history of a molecular targeted 
therapy is one of the success stories for the patients with 
oncogenic driver aberrations; however, drug discovery 
and developments starting from traditional screening 
methods to clinical trials is an extremely expensive and 
time-consuming procedure. Moreover, as another major 
issue, less than 10% of agents entering clinical trial set-
tings achieve successful results and the Food and Drug 
Administration approval [98]. Furthermore, approxi-
mately 20% of tumors show innate resistance and early 
tumor progression based on several biological charac-
teristics, such as intratumoral heterogeneity and other 
driver mutations. The remaining tumors subsequently 
acquire resistance through various molecular mecha-
nisms, including secondary mutation of the same driver 
gene or activation of other oncogenic signals. Most onco-
genic driver aberrations are themselves only a relatively 
rare fraction of the tumor cell population. The subpopu-
lation classified by a specific resistant mechanism of each 
oncogenic driver aberrations is increased through the 
variety of aberrations [99]. Therefore, screening prom-
ising new targeted strategies for overcoming resistance 
mechanisms determined by oncogenic aberrations in 
each specific subpopulation and conducting multiple 
phase I/II trials based on traditional methods seems 
unrealistic.

Potential role of AI in development of new treatment 
strategies targeting oncogenic driver aberrations
The discovery of highly selective inhibitors that tar-
get oncogenic driver aberrations is a crucial step in the 
ultimate approval of a novel standard molecular tar-
geted therapy. AI is expected to play several roles in the 
development of new treatment strategies (Fig.  3). First, 
AI enables the virtual screening of targeted lead com-
pounds using multiple public databases, such as TCGA, 
the Human Protein Atlas and DrugBank, and PubChem. 
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AI-based virtual screening supports the identification of 
candidate compounds with highly specific selectivity for 
targeted oncogenic driver aberrations and low toxicity. 
For example, Istvan et  al. reported an AI-assisted com-
putational method, which is a proprietary technology of 
Oncompass Medicine Inc., to prioritize potential molec-
ular targeted therapies based on the complex individual 
molecular profile of the tumor in each patient [100]. 
They analyzed the clinical benefits of the digital drug-
assignment system using the data from the SHIVA01 
precision oncology clinical trial, and showed that the 
system identified substantial molecular targets with the 
fitting inhibitors, including in lung cancer patients, such 
as FMS Related Receptor Tyrosine Kinase 3 mutation 
with sorafenib and Androgen receptor expression with 
abiraterone. These findings indicate that the AI-assisted 
computational systems for prioritization of potential 
molecular targeted therapies would be promising to 
improve the clinical benefits of precision oncology. As 
another example, in recent studies, it has been reported 
that the discovery of selective heat shock protein 90 
inhibitors and an aurora A inhibitor was driven by virtual 
screening [101, 102]. These ligand-based virtual screen-
ing methods will be a powerful tool in selecting a new 
and ideal inhibitor against previously identified molecu-
lar targets. Because resistance to targeted drugs of onco-
genic driver aberrations can emerge through secondary 
oncogenic driver aberrations that exhibit various molec-
ular mechanism of resistance, the virtual screening of 
compounds can promote the cost-effective development 
of treatment strategies for overcoming heterogeneous 
mechanism of resistance. Traditional screening methods 

combined with conducting multiple phase I/II trials are 
currently required to replenish the pool of potential 
innovative development strategies and new drugs for tar-
geting oncogenic driver aberrations. In addition to the 
discovery of targeted compounds, AI will be contribut-
ing on the prediction of success rates of clinical trials. 
Indeed, Gayvert et  al. reported that a new data-driven 
approach is able to predict clinical toxicity and may iden-
tify compounds in clinical trials with acceptable toxicity 
[102]. Improving the probability of success for clinical tri-
als based on AI would also help resolve the current issue 
of a limited availability of patients with rare oncogenic 
driver aberrations.

Prospects
Precision medicine in the treatment of lung cancer has 
shown a dramatic growth with progression in harmoni-
zation of molecular cancer biology and AI-based tech-
nology. AI, radiomics, and molecular cancer biology 
exhibit mutual influence, and can generate powerful 
AI systems for further development of individual treat-
ment strategies. Although accumulating recent omics 
data have consecutively provided a variety of new bio-
logical insights, the analysis may have been beyond the 
capabilities of manual analysis. Therefore, establishing 
new framework for analyzing huge size of omics data, 
such as academia–industry collaboration and aca-
demia–government technological collaboration, will be 
important as well as the AI development. With regard 
to radiology and molecular targeted therapies, some 
academia–industry collaborations have successfully 
complemented each other [45, 46, 100], and AI-based 
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screening has been accelerated toward clinical appli-
cations. Prospectively, these frameworks, which can 
lead to further progression of inter-industry activities, 
and medical AI systems could be a detector of micro-
changes in patients that can go unnoticed by human 
eyes, and be a selector of suitable treatments for indi-
vidual patients to support clinicians, resulting in more 
early intervention and in improving the quality of life 
of patients.

Moreover, comprehensive profiles of individual omics 
data are increasingly important not only to patients 
but also to their families and blood relatives. Addition-
ally, recent AI-based systems for multi-omics analyses 
have an increased possibility of accidental and unex-
pected discoveries to affect an individual’s life. Patients 
should have the opportunity to know how their data is 
being shared and used, and the enormous individual 
data should be protected against risks of disclosure. 
Therefore, omics information holders have ethical and 
legal obligations, big responsibilities for data steward-
ship, and regulatory issues for decision-making. Under 
the current law structure, these ethical and legal issues 
may not be satisfactorily served with regard to various 
aspects including those in the area of intellectual prop-
erty. In parallel with the rapid development of AI-based 
omics data analysis, revisions to the legal framework 
would also be needed.

Conclusions
Machine-learning and deep-learning technologies have 
undergone relevant advances, enabling the analysis large 
omics datasets and clinical information. Toward improv-
ing the prognosis of patients with NSCLC, AI has shown 
breakthroughs in potentially resolving current issues in 
the development of new treatment strategies, including 
for ICIs and molecular targeted therapy. These include, 
(1) identification of early detection or prognosis bio-
markers, (2) elucidation of molecular biological mecha-
nisms of tumor development and therapeutic resistance, 
(3) establishment of patient selection and stratification 
methods, (4) discovery of lead targeted compounds, and 
(5) design of clinical trials and prediction of their prob-
able achievements or outcomes. In the coming decade, 
researchers will need to select suitable AI algorithms for 
analyzing expansive amounts of omics data and clinical 
information. Harmonization of molecular cancer biology 
and AI technology will dramatically improve research 
strategies and accelerate the creation of efficient out-
comes that are beyond simply human capability.
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